If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-34x+58=0
a = 1; b = -34; c = +58;
Δ = b2-4ac
Δ = -342-4·1·58
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{231}}{2*1}=\frac{34-2\sqrt{231}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{231}}{2*1}=\frac{34+2\sqrt{231}}{2} $
| 9d+2d+9d=20d | | 14+a=5a | | 5y+8(2y-9)=12 | | 2m+7=3m+8 | | 0,5^-x=0,0635^2x | | 0,5^x=0,0635^2x | | (x-2)=7x+1 | | 27=20x-x^2 | | (x-1)x=1024,x= | | (x-1)x=1024 | | Y=4÷3x-6 | | (3x+7)+(5x-4)=13/6 | | (7x+10)/(5x+10)=9/7 | | (X+3)(x-5)=65 | | 9a+2/3=12 | | x=2+8=120 | | 17p-19=49 | | 15/4+7m=9 | | x-7/100=41 | | 10m+20=90 | | 3a-5=2-5a+9 | | 3a-5=2a-5a+9 | | -6y-4+3y=8=24 | | 31=24b | | X+1/3x=35 | | 2x–14=–8 | | -3/5(4x-1)+5x/8(5-3)=-11x/10 | | 3x+7=3x+5, | | 5x+2(3x–1)=3(4x–3)+2x | | 3(4x–1)+5x(5–3)=-11x5810 | | 2x–14=–8, | | -8x+13=-10x–19 |